/*
|
* Java port of Bullet (c) 2008 Martin Dvorak <jezek2@advel.cz>
|
*
|
* Bullet Continuous Collision Detection and Physics Library
|
* Copyright (c) 2003-2008 Erwin Coumans http://www.bulletphysics.com/
|
*
|
* This software is provided 'as-is', without any express or implied warranty.
|
* In no event will the authors be held liable for any damages arising from
|
* the use of this software.
|
*
|
* Permission is granted to anyone to use this software for any purpose,
|
* including commercial applications, and to alter it and redistribute it
|
* freely, subject to the following restrictions:
|
*
|
* 1. The origin of this software must not be misrepresented; you must not
|
* claim that you wrote the original software. If you use this software
|
* in a product, an acknowledgment in the product documentation would be
|
* appreciated but is not required.
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
* misrepresented as being the original software.
|
* 3. This notice may not be removed or altered from any source distribution.
|
*/
|
|
package com.bulletphysics.dynamics.constraintsolver;
|
|
import com.bulletphysics.BulletGlobals;
|
import com.bulletphysics.linearmath.VectorUtil;
|
import cz.advel.stack.Stack;
|
import javax.vecmath.Matrix3f;
|
import javax.vecmath.Vector3f;
|
|
//notes:
|
// Another memory optimization would be to store m_1MinvJt in the remaining 3 w components
|
// which makes the btJacobianEntry memory layout 16 bytes
|
// if you only are interested in angular part, just feed massInvA and massInvB zero
|
|
/**
|
* Jacobian entry is an abstraction that allows to describe constraints.
|
* It can be used in combination with a constraint solver.
|
* Can be used to relate the effect of an impulse to the constraint error.
|
*
|
* @author jezek2
|
*/
|
public class JacobianEntry implements java.io.Serializable {
|
|
//protected final BulletStack stack = BulletStack.get();
|
|
public final Vector3f linearJointAxis = new Vector3f();
|
public final Vector3f aJ = new Vector3f();
|
public final Vector3f bJ = new Vector3f();
|
public final Vector3f m_0MinvJt = new Vector3f();
|
public final Vector3f m_1MinvJt = new Vector3f();
|
// Optimization: can be stored in the w/last component of one of the vectors
|
public float Adiag;
|
|
public JacobianEntry() {
|
}
|
|
/**
|
* Constraint between two different rigidbodies.
|
*/
|
public void init(Matrix3f world2A,
|
Matrix3f world2B,
|
Vector3f rel_pos1, Vector3f rel_pos2,
|
Vector3f jointAxis,
|
Vector3f inertiaInvA,
|
float massInvA,
|
Vector3f inertiaInvB,
|
float massInvB)
|
{
|
linearJointAxis.set(jointAxis);
|
|
aJ.cross(rel_pos1, linearJointAxis);
|
world2A.transform(aJ);
|
|
bJ.set(linearJointAxis);
|
bJ.negate();
|
bJ.cross(rel_pos2, bJ);
|
world2B.transform(bJ);
|
|
VectorUtil.mul(m_0MinvJt, inertiaInvA, aJ);
|
VectorUtil.mul(m_1MinvJt, inertiaInvB, bJ);
|
Adiag = massInvA + m_0MinvJt.dot(aJ) + massInvB + m_1MinvJt.dot(bJ);
|
|
assert (Adiag > 0f);
|
}
|
|
/**
|
* Angular constraint between two different rigidbodies.
|
*/
|
public void init(Vector3f jointAxis,
|
Matrix3f world2A,
|
Matrix3f world2B,
|
Vector3f inertiaInvA,
|
Vector3f inertiaInvB)
|
{
|
linearJointAxis.set(0f, 0f, 0f);
|
|
aJ.set(jointAxis);
|
world2A.transform(aJ);
|
|
bJ.set(jointAxis);
|
bJ.negate();
|
world2B.transform(bJ);
|
|
VectorUtil.mul(m_0MinvJt, inertiaInvA, aJ);
|
VectorUtil.mul(m_1MinvJt, inertiaInvB, bJ);
|
Adiag = m_0MinvJt.dot(aJ) + m_1MinvJt.dot(bJ);
|
|
assert (Adiag > 0f);
|
}
|
|
/**
|
* Angular constraint between two different rigidbodies.
|
*/
|
public void init(Vector3f axisInA,
|
Vector3f axisInB,
|
Vector3f inertiaInvA,
|
Vector3f inertiaInvB)
|
{
|
linearJointAxis.set(0f, 0f, 0f);
|
aJ.set(axisInA);
|
|
bJ.set(axisInB);
|
bJ.negate();
|
|
VectorUtil.mul(m_0MinvJt, inertiaInvA, aJ);
|
VectorUtil.mul(m_1MinvJt, inertiaInvB, bJ);
|
Adiag = m_0MinvJt.dot(aJ) + m_1MinvJt.dot(bJ);
|
|
assert (Adiag > 0f);
|
}
|
|
/**
|
* Constraint on one rigidbody.
|
*/
|
public void init(
|
Matrix3f world2A,
|
Vector3f rel_pos1, Vector3f rel_pos2,
|
Vector3f jointAxis,
|
Vector3f inertiaInvA,
|
float massInvA)
|
{
|
linearJointAxis.set(jointAxis);
|
|
aJ.cross(rel_pos1, jointAxis);
|
world2A.transform(aJ);
|
|
bJ.set(jointAxis);
|
bJ.negate();
|
bJ.cross(rel_pos2, bJ);
|
world2A.transform(bJ);
|
|
VectorUtil.mul(m_0MinvJt, inertiaInvA, aJ);
|
m_1MinvJt.set(0f, 0f, 0f);
|
Adiag = massInvA + m_0MinvJt.dot(aJ);
|
|
assert (Adiag > 0f);
|
}
|
|
public float getDiagonal() { return Adiag; }
|
|
/**
|
* For two constraints on the same rigidbody (for example vehicle friction).
|
*/
|
public float getNonDiagonal(JacobianEntry jacB, float massInvA) {
|
JacobianEntry jacA = this;
|
float lin = massInvA * jacA.linearJointAxis.dot(jacB.linearJointAxis);
|
float ang = jacA.m_0MinvJt.dot(jacB.aJ);
|
return lin + ang;
|
}
|
|
/**
|
* For two constraints on sharing two same rigidbodies (for example two contact points between two rigidbodies).
|
*/
|
public float getNonDiagonal(JacobianEntry jacB, float massInvA, float massInvB) {
|
JacobianEntry jacA = this;
|
|
Vector3f lin = Stack.alloc(Vector3f.class);
|
VectorUtil.mul(lin, jacA.linearJointAxis, jacB.linearJointAxis);
|
|
Vector3f ang0 = Stack.alloc(Vector3f.class);
|
VectorUtil.mul(ang0, jacA.m_0MinvJt, jacB.aJ);
|
|
Vector3f ang1 = Stack.alloc(Vector3f.class);
|
VectorUtil.mul(ang1, jacA.m_1MinvJt, jacB.bJ);
|
|
Vector3f lin0 = Stack.alloc(Vector3f.class);
|
lin0.scale(massInvA, lin);
|
|
Vector3f lin1 = Stack.alloc(Vector3f.class);
|
lin1.scale(massInvB, lin);
|
|
Vector3f sum = Stack.alloc(Vector3f.class);
|
VectorUtil.add(sum, ang0, ang1, lin0, lin1);
|
|
return sum.x + sum.y + sum.z;
|
}
|
|
public float getRelativeVelocity(Vector3f linvelA, Vector3f angvelA, Vector3f linvelB, Vector3f angvelB) {
|
Vector3f linrel = Stack.alloc(Vector3f.class);
|
linrel.sub(linvelA, linvelB);
|
|
Vector3f angvela = Stack.alloc(Vector3f.class);
|
VectorUtil.mul(angvela, angvelA, aJ);
|
|
Vector3f angvelb = Stack.alloc(Vector3f.class);
|
VectorUtil.mul(angvelb, angvelB, bJ);
|
|
VectorUtil.mul(linrel, linrel, linearJointAxis);
|
|
angvela.add(angvelb);
|
angvela.add(linrel);
|
|
float rel_vel2 = angvela.x + angvela.y + angvela.z;
|
return rel_vel2 + BulletGlobals.FLT_EPSILON;
|
}
|
|
}
|