/*
|
* Java port of Bullet (c) 2008 Martin Dvorak <jezek2@advel.cz>
|
*
|
* Bullet Continuous Collision Detection and Physics Library
|
* Copyright (c) 2003-2008 Erwin Coumans http://www.bulletphysics.com/
|
*
|
* This software is provided 'as-is', without any express or implied warranty.
|
* In no event will the authors be held liable for any damages arising from
|
* the use of this software.
|
*
|
* Permission is granted to anyone to use this software for any purpose,
|
* including commercial applications, and to alter it and redistribute it
|
* freely, subject to the following restrictions:
|
*
|
* 1. The origin of this software must not be misrepresented; you must not
|
* claim that you wrote the original software. If you use this software
|
* in a product, an acknowledgment in the product documentation would be
|
* appreciated but is not required.
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
* misrepresented as being the original software.
|
* 3. This notice may not be removed or altered from any source distribution.
|
*/
|
|
package com.bulletphysics.dynamics.constraintsolver;
|
|
import com.bulletphysics.dynamics.RigidBody;
|
import com.bulletphysics.linearmath.Transform;
|
import com.bulletphysics.linearmath.TransformUtil;
|
import cz.advel.stack.Stack;
|
import javax.vecmath.Vector3f;
|
|
/**
|
* SolverBody is an internal data structure for the constraint solver. Only necessary
|
* data is packed to increase cache coherence/performance.
|
*
|
* @author jezek2
|
*/
|
public class SolverBody implements java.io.Serializable {
|
|
//protected final BulletStack stack = BulletStack.get();
|
|
public final Vector3f angularVelocity = new Vector3f();
|
public float angularFactor;
|
public float invMass;
|
public float friction;
|
public RigidBody originalBody;
|
public final Vector3f linearVelocity = new Vector3f();
|
public final Vector3f centerOfMassPosition = new Vector3f();
|
|
public final Vector3f pushVelocity = new Vector3f();
|
public final Vector3f turnVelocity = new Vector3f();
|
|
public void getVelocityInLocalPoint(Vector3f rel_pos, Vector3f velocity) {
|
Vector3f tmp = Stack.alloc(Vector3f.class);
|
tmp.cross(angularVelocity, rel_pos);
|
velocity.add(linearVelocity, tmp);
|
}
|
|
/**
|
* Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position.
|
*/
|
public void internalApplyImpulse(Vector3f linearComponent, Vector3f angularComponent, float impulseMagnitude) {
|
if (invMass != 0f) {
|
linearVelocity.scaleAdd(impulseMagnitude, linearComponent, linearVelocity);
|
angularVelocity.scaleAdd(impulseMagnitude * angularFactor, angularComponent, angularVelocity);
|
}
|
}
|
|
public void internalApplyPushImpulse(Vector3f linearComponent, Vector3f angularComponent, float impulseMagnitude) {
|
if (invMass != 0f) {
|
pushVelocity.scaleAdd(impulseMagnitude, linearComponent, pushVelocity);
|
turnVelocity.scaleAdd(impulseMagnitude * angularFactor, angularComponent, turnVelocity);
|
}
|
}
|
|
public void writebackVelocity() {
|
if (invMass != 0f) {
|
originalBody.setLinearVelocity(linearVelocity);
|
originalBody.setAngularVelocity(angularVelocity);
|
//m_originalBody->setCompanionId(-1);
|
}
|
}
|
|
public void writebackVelocity(float timeStep) {
|
if (invMass != 0f) {
|
originalBody.setLinearVelocity(linearVelocity);
|
originalBody.setAngularVelocity(angularVelocity);
|
|
// correct the position/orientation based on push/turn recovery
|
Transform newTransform = Stack.alloc(Transform.class);
|
Transform curTrans = originalBody.getWorldTransform(Stack.alloc(Transform.class));
|
TransformUtil.integrateTransform(curTrans, pushVelocity, turnVelocity, timeStep, newTransform);
|
originalBody.setWorldTransform(newTransform);
|
|
//m_originalBody->setCompanionId(-1);
|
}
|
}
|
|
public void readVelocity() {
|
if (invMass != 0f) {
|
originalBody.getLinearVelocity(linearVelocity);
|
originalBody.getAngularVelocity(angularVelocity);
|
}
|
}
|
|
}
|