/*
|
* This software is a cooperative product of The MathWorks and the National
|
* Institute of Standards and Technology (NIST) which has been released to the
|
* public domain. Neither The MathWorks nor NIST assumes any responsibility
|
* whatsoever for its use by other parties, and makes no guarantees, expressed
|
* or implied, about its quality, reliability, or any other characteristic.
|
*/
|
|
/*
|
* SingularValueDecomposition.java
|
* Copyright (C) 1999 The Mathworks and NIST
|
*
|
*/
|
|
package //weka.core.
|
matrix;
|
|
import weka.core.RevisionHandler;
|
import weka.core.RevisionUtils;
|
|
import java.io.Serializable;
|
|
/**
|
* Singular Value Decomposition.
|
* <P>
|
* For an m-by-n matrix A with m >= n, the singular value decomposition is an
|
* m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and an n-by-n
|
* orthogonal matrix V so that A = U*S*V'.
|
* <P>
|
* The singular values, sigma[k] = S[k][k], are ordered so that sigma[0] >=
|
* sigma[1] >= ... >= sigma[n-1].
|
* <P>
|
* The singular value decompostion always exists, so the constructor will never
|
* fail. The matrix condition number and the effective numerical rank can be
|
* computed from this decomposition.
|
* <p/>
|
* Adapted from the <a href="http://math.nist.gov/javanumerics/jama/" target="_blank">JAMA</a> package.
|
*
|
* @author The Mathworks and NIST
|
* @author Fracpete (fracpete at waikato dot ac dot nz)
|
* @version $Revision: 1.5 $
|
*/
|
public class SingularValueDecomposition
|
implements Serializable, RevisionHandler {
|
|
/** for serialization */
|
private static final long serialVersionUID = -8738089610999867951L;
|
|
/**
|
* Arrays for internal storage of U and V.
|
* @serial internal storage of U.
|
* @serial internal storage of V.
|
*/
|
private double[][] U, V;
|
|
/**
|
* Array for internal storage of singular values.
|
* @serial internal storage of singular values.
|
*/
|
private double[] s;
|
|
/**
|
* Row and column dimensions.
|
* @serial row dimension.
|
* @serial column dimension.
|
*/
|
private int m, n;
|
|
/**
|
* Construct the singular value decomposition
|
* @param Arg Rectangular matrix
|
*/
|
public SingularValueDecomposition(Matrix Arg) {
|
|
// Derived from LINPACK code.
|
// Initialize.
|
double[][] A = Arg.getArrayCopy();
|
m = Arg.getRowDimension();
|
n = Arg.getColumnDimension();
|
|
/* Apparently the failing cases are only a proper subset of (m<n),
|
so let's not throw error. Correct fix to come later?
|
if (m<n) {
|
throw new IllegalArgumentException("Jama SVD only works for m >= n"); }
|
*/
|
|
int nu = Math.min(m,n);
|
s = new double [Math.min(m+1,n)];
|
U = new double [m][nu];
|
V = new double [n][n];
|
double[] e = new double [n];
|
double[] work = new double [m];
|
boolean wantu = true;
|
boolean wantv = true;
|
|
// Reduce A to bidiagonal form, storing the diagonal elements
|
// in s and the super-diagonal elements in e.
|
|
int nct = Math.min(m-1,n);
|
int nrt = Math.max(0,Math.min(n-2,m));
|
for (int k = 0; k < Math.max(nct,nrt); k++) {
|
if (k < nct) {
|
|
// Compute the transformation for the k-th column and
|
// place the k-th diagonal in s[k].
|
// Compute 2-norm of k-th column without under/overflow.
|
s[k] = 0;
|
for (int i = k; i < m; i++) {
|
s[k] = Maths.hypot(s[k],A[i][k]);
|
}
|
if (s[k] != 0.0) {
|
if (A[k][k] < 0.0) {
|
s[k] = -s[k];
|
}
|
for (int i = k; i < m; i++) {
|
A[i][k] /= s[k];
|
}
|
A[k][k] += 1.0;
|
}
|
s[k] = -s[k];
|
}
|
for (int j = k+1; j < n; j++) {
|
if ((k < nct) & (s[k] != 0.0)) {
|
|
// Apply the transformation.
|
|
double t = 0;
|
for (int i = k; i < m; i++) {
|
t += A[i][k]*A[i][j];
|
}
|
t = -t/A[k][k];
|
for (int i = k; i < m; i++) {
|
A[i][j] += t*A[i][k];
|
}
|
}
|
|
// Place the k-th row of A into e for the
|
// subsequent calculation of the row transformation.
|
|
e[j] = A[k][j];
|
}
|
if (wantu & (k < nct)) {
|
|
// Place the transformation in U for subsequent back
|
// multiplication.
|
|
for (int i = k; i < m; i++) {
|
U[i][k] = A[i][k];
|
}
|
}
|
if (k < nrt) {
|
|
// Compute the k-th row transformation and place the
|
// k-th super-diagonal in e[k].
|
// Compute 2-norm without under/overflow.
|
e[k] = 0;
|
for (int i = k+1; i < n; i++) {
|
e[k] = Maths.hypot(e[k],e[i]);
|
}
|
if (e[k] != 0.0) {
|
if (e[k+1] < 0.0) {
|
e[k] = -e[k];
|
}
|
for (int i = k+1; i < n; i++) {
|
e[i] /= e[k];
|
}
|
e[k+1] += 1.0;
|
}
|
e[k] = -e[k];
|
if ((k+1 < m) & (e[k] != 0.0)) {
|
|
// Apply the transformation.
|
|
for (int i = k+1; i < m; i++) {
|
work[i] = 0.0;
|
}
|
for (int j = k+1; j < n; j++) {
|
for (int i = k+1; i < m; i++) {
|
work[i] += e[j]*A[i][j];
|
}
|
}
|
for (int j = k+1; j < n; j++) {
|
double t = -e[j]/e[k+1];
|
for (int i = k+1; i < m; i++) {
|
A[i][j] += t*work[i];
|
}
|
}
|
}
|
if (wantv) {
|
|
// Place the transformation in V for subsequent
|
// back multiplication.
|
|
for (int i = k+1; i < n; i++) {
|
V[i][k] = e[i];
|
}
|
}
|
}
|
}
|
|
// Set up the final bidiagonal matrix or order p.
|
|
int p = Math.min(n,m+1);
|
if (nct < n) {
|
s[nct] = A[nct][nct];
|
}
|
if (m < p) {
|
s[p-1] = 0.0;
|
}
|
if (nrt+1 < p) {
|
e[nrt] = A[nrt][p-1];
|
}
|
e[p-1] = 0.0;
|
|
// If required, generate U.
|
|
if (wantu) {
|
for (int j = nct; j < nu; j++) {
|
for (int i = 0; i < m; i++) {
|
U[i][j] = 0.0;
|
}
|
U[j][j] = 1.0;
|
}
|
for (int k = nct-1; k >= 0; k--) {
|
if (s[k] != 0.0) {
|
for (int j = k+1; j < nu; j++) {
|
double t = 0;
|
for (int i = k; i < m; i++) {
|
t += U[i][k]*U[i][j];
|
}
|
t = -t/U[k][k];
|
for (int i = k; i < m; i++) {
|
U[i][j] += t*U[i][k];
|
}
|
}
|
for (int i = k; i < m; i++ ) {
|
U[i][k] = -U[i][k];
|
}
|
U[k][k] = 1.0 + U[k][k];
|
for (int i = 0; i < k-1; i++) {
|
U[i][k] = 0.0;
|
}
|
} else {
|
for (int i = 0; i < m; i++) {
|
U[i][k] = 0.0;
|
}
|
U[k][k] = 1.0;
|
}
|
}
|
}
|
|
// If required, generate V.
|
|
if (wantv) {
|
for (int k = n-1; k >= 0; k--) {
|
if ((k < nrt) & (e[k] != 0.0)) {
|
for (int j = k+1; j < nu; j++) {
|
double t = 0;
|
for (int i = k+1; i < n; i++) {
|
t += V[i][k]*V[i][j];
|
}
|
t = -t/V[k+1][k];
|
for (int i = k+1; i < n; i++) {
|
V[i][j] += t*V[i][k];
|
}
|
}
|
}
|
for (int i = 0; i < n; i++) {
|
V[i][k] = 0.0;
|
}
|
V[k][k] = 1.0;
|
}
|
}
|
|
// Main iteration loop for the singular values.
|
|
int pp = p-1;
|
int iter = 0;
|
double eps = Math.pow(2.0,-52.0);
|
double tiny = Math.pow(2.0,-966.0);
|
while (p > 0) {
|
int k,kase;
|
|
// Here is where a test for too many iterations would go.
|
|
// This section of the program inspects for
|
// negligible elements in the s and e arrays. On
|
// completion the variables kase and k are set as follows.
|
|
// kase = 1 if s(p) and e[k-1] are negligible and k<p
|
// kase = 2 if s(k) is negligible and k<p
|
// kase = 3 if e[k-1] is negligible, k<p, and
|
// s(k), ..., s(p) are not negligible (qr step).
|
// kase = 4 if e(p-1) is negligible (convergence).
|
|
for (k = p-2; k >= -1; k--) {
|
if (k == -1) {
|
break;
|
}
|
if (Math.abs(e[k]) <=
|
tiny + eps*(Math.abs(s[k]) + Math.abs(s[k+1]))) {
|
e[k] = 0.0;
|
break;
|
}
|
}
|
if (k == p-2) {
|
kase = 4;
|
} else {
|
int ks;
|
for (ks = p-1; ks >= k; ks--) {
|
if (ks == k) {
|
break;
|
}
|
double t = (ks != p ? Math.abs(e[ks]) : 0.) +
|
(ks != k+1 ? Math.abs(e[ks-1]) : 0.);
|
if (Math.abs(s[ks]) <= tiny + eps*t) {
|
s[ks] = 0.0;
|
break;
|
}
|
}
|
if (ks == k) {
|
kase = 3;
|
} else if (ks == p-1) {
|
kase = 1;
|
} else {
|
kase = 2;
|
k = ks;
|
}
|
}
|
k++;
|
|
// Perform the task indicated by kase.
|
|
switch (kase) {
|
|
// Deflate negligible s(p).
|
|
case 1: {
|
double f = e[p-2];
|
e[p-2] = 0.0;
|
for (int j = p-2; j >= k; j--) {
|
double t = Maths.hypot(s[j],f);
|
double cs = s[j]/t;
|
double sn = f/t;
|
s[j] = t;
|
if (j != k) {
|
f = -sn*e[j-1];
|
e[j-1] = cs*e[j-1];
|
}
|
if (wantv) {
|
for (int i = 0; i < n; i++) {
|
t = cs*V[i][j] + sn*V[i][p-1];
|
V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1];
|
V[i][j] = t;
|
}
|
}
|
}
|
}
|
break;
|
|
// Split at negligible s(k).
|
|
case 2: {
|
double f = e[k-1];
|
e[k-1] = 0.0;
|
for (int j = k; j < p; j++) {
|
double t = Maths.hypot(s[j],f);
|
double cs = s[j]/t;
|
double sn = f/t;
|
s[j] = t;
|
f = -sn*e[j];
|
e[j] = cs*e[j];
|
if (wantu) {
|
for (int i = 0; i < m; i++) {
|
t = cs*U[i][j] + sn*U[i][k-1];
|
U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1];
|
U[i][j] = t;
|
}
|
}
|
}
|
}
|
break;
|
|
// Perform one qr step.
|
|
case 3: {
|
|
// Calculate the shift.
|
|
double scale = Math.max(Math.max(Math.max(Math.max(
|
Math.abs(s[p-1]),Math.abs(s[p-2])),Math.abs(e[p-2])),
|
Math.abs(s[k])),Math.abs(e[k]));
|
double sp = s[p-1]/scale;
|
double spm1 = s[p-2]/scale;
|
double epm1 = e[p-2]/scale;
|
double sk = s[k]/scale;
|
double ek = e[k]/scale;
|
double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;
|
double c = (sp*epm1)*(sp*epm1);
|
double shift = 0.0;
|
if ((b != 0.0) | (c != 0.0)) {
|
shift = Math.sqrt(b*b + c);
|
if (b < 0.0) {
|
shift = -shift;
|
}
|
shift = c/(b + shift);
|
}
|
double f = (sk + sp)*(sk - sp) + shift;
|
double g = sk*ek;
|
|
// Chase zeros.
|
|
for (int j = k; j < p-1; j++) {
|
double t = Maths.hypot(f,g);
|
double cs = f/t;
|
double sn = g/t;
|
if (j != k) {
|
e[j-1] = t;
|
}
|
f = cs*s[j] + sn*e[j];
|
e[j] = cs*e[j] - sn*s[j];
|
g = sn*s[j+1];
|
s[j+1] = cs*s[j+1];
|
if (wantv) {
|
for (int i = 0; i < n; i++) {
|
t = cs*V[i][j] + sn*V[i][j+1];
|
V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1];
|
V[i][j] = t;
|
}
|
}
|
t = Maths.hypot(f,g);
|
cs = f/t;
|
sn = g/t;
|
s[j] = t;
|
f = cs*e[j] + sn*s[j+1];
|
s[j+1] = -sn*e[j] + cs*s[j+1];
|
g = sn*e[j+1];
|
e[j+1] = cs*e[j+1];
|
if (wantu && (j < m-1)) {
|
for (int i = 0; i < m; i++) {
|
t = cs*U[i][j] + sn*U[i][j+1];
|
U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1];
|
U[i][j] = t;
|
}
|
}
|
}
|
e[p-2] = f;
|
iter = iter + 1;
|
}
|
break;
|
|
// Convergence.
|
|
case 4: {
|
|
// Make the singular values positive.
|
|
if (s[k] <= 0.0) {
|
s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
|
if (wantv) {
|
for (int i = 0; i <= pp; i++) {
|
V[i][k] = -V[i][k];
|
}
|
}
|
}
|
|
// Order the singular values.
|
|
while (k < pp) {
|
if (s[k] >= s[k+1]) {
|
break;
|
}
|
double t = s[k];
|
s[k] = s[k+1];
|
s[k+1] = t;
|
if (wantv && (k < n-1)) {
|
for (int i = 0; i < n; i++) {
|
t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t;
|
}
|
}
|
if (wantu && (k < m-1)) {
|
for (int i = 0; i < m; i++) {
|
t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t;
|
}
|
}
|
k++;
|
}
|
iter = 0;
|
p--;
|
}
|
break;
|
}
|
}
|
}
|
|
/**
|
* Return the left singular vectors
|
* @return U
|
*/
|
public Matrix getU() {
|
return new Matrix(U,m,Math.min(m+1,n));
|
}
|
|
/**
|
* Return the right singular vectors
|
* @return V
|
*/
|
public Matrix getV() {
|
return new Matrix(V,n,n);
|
}
|
|
/**
|
* Return the one-dimensional array of singular values
|
* @return diagonal of S.
|
*/
|
public double[] getSingularValues() {
|
return s;
|
}
|
|
/**
|
* Return the diagonal matrix of singular values
|
* @return S
|
*/
|
public Matrix getS() {
|
Matrix X = new Matrix(n,n);
|
double[][] S = X.getArray();
|
for (int i = 0; i < n; i++) {
|
for (int j = 0; j < n; j++) {
|
S[i][j] = 0.0;
|
}
|
S[i][i] = this.s[i];
|
}
|
return X;
|
}
|
|
/**
|
* Two norm
|
* @return max(S)
|
*/
|
public double norm2() {
|
return s[0];
|
}
|
|
/**
|
* Two norm condition number
|
* @return max(S)/min(S)
|
*/
|
public double cond() {
|
return s[0]/s[Math.min(m,n)-1];
|
}
|
|
/**
|
* Effective numerical matrix rank
|
* @return Number of nonnegligible singular values.
|
*/
|
public int rank() {
|
double eps = Math.pow(2.0,-52.0);
|
double tol = Math.max(m,n)*s[0]*eps;
|
int r = 0;
|
for (int i = 0; i < s.length; i++) {
|
if (s[i] > tol) {
|
r++;
|
}
|
}
|
return r;
|
}
|
|
/**
|
* Returns the revision string.
|
*
|
* @return the revision
|
*/
|
public String getRevision() {
|
return RevisionUtils.extract("$Revision: 1.5 $");
|
}
|
}
|