/*
|
* Java port of Bullet (c) 2008 Martin Dvorak <jezek2@advel.cz>
|
*
|
* Bullet Continuous Collision Detection and Physics Library
|
* Copyright (c) 2003-2008 Erwin Coumans http://www.bulletphysics.com/
|
*
|
* This software is provided 'as-is', without any express or implied warranty.
|
* In no event will the authors be held liable for any damages arising from
|
* the use of this software.
|
*
|
* Permission is granted to anyone to use this software for any purpose,
|
* including commercial applications, and to alter it and redistribute it
|
* freely, subject to the following restrictions:
|
*
|
* 1. The origin of this software must not be misrepresented; you must not
|
* claim that you wrote the original software. If you use this software
|
* in a product, an acknowledgment in the product documentation would be
|
* appreciated but is not required.
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
* misrepresented as being the original software.
|
* 3. This notice may not be removed or altered from any source distribution.
|
*/
|
|
package com.bulletphysics.collision.narrowphase;
|
|
import com.bulletphysics.util.ObjectPool;
|
import com.bulletphysics.collision.narrowphase.DiscreteCollisionDetectorInterface.ClosestPointInput;
|
import com.bulletphysics.collision.shapes.ConvexShape;
|
import com.bulletphysics.linearmath.Transform;
|
import com.bulletphysics.linearmath.VectorUtil;
|
import cz.advel.stack.Stack;
|
import javax.vecmath.Vector3f;
|
|
/**
|
* GjkConvexCast performs a raycast on a convex object using support mapping.
|
*
|
* @author jezek2
|
*/
|
public class GjkConvexCast extends ConvexCast {
|
|
//protected final BulletStack stack = BulletStack.get();
|
protected final ObjectPool<ClosestPointInput> pointInputsPool = ObjectPool.get(ClosestPointInput.class);
|
|
//#ifdef BT_USE_DOUBLE_PRECISION
|
// private static final int MAX_ITERATIONS = 64;
|
//#else
|
private static final int MAX_ITERATIONS = 32;
|
//#endif
|
|
private SimplexSolverInterface simplexSolver;
|
private ConvexShape convexA;
|
private ConvexShape convexB;
|
|
private GjkPairDetector gjk = new GjkPairDetector();
|
|
public GjkConvexCast(ConvexShape convexA, ConvexShape convexB, SimplexSolverInterface simplexSolver) {
|
this.simplexSolver = simplexSolver;
|
this.convexA = convexA;
|
this.convexB = convexB;
|
}
|
|
public boolean calcTimeOfImpact(Transform fromA, Transform toA, Transform fromB, Transform toB, CastResult result) {
|
simplexSolver.reset();
|
|
// compute linear velocity for this interval, to interpolate
|
// assume no rotation/angular velocity, assert here?
|
Vector3f linVelA = Stack.alloc(Vector3f.class);
|
Vector3f linVelB = Stack.alloc(Vector3f.class);
|
|
linVelA.sub(toA.origin, fromA.origin);
|
linVelB.sub(toB.origin, fromB.origin);
|
|
float radius = 0.001f;
|
float lambda = 0f;
|
Vector3f v = Stack.alloc(Vector3f.class);
|
v.set(1f, 0f, 0f);
|
|
int maxIter = MAX_ITERATIONS;
|
|
Vector3f n = Stack.alloc(Vector3f.class);
|
n.set(0f, 0f, 0f);
|
boolean hasResult = false;
|
Vector3f c = Stack.alloc(Vector3f.class);
|
Vector3f r = Stack.alloc(Vector3f.class);
|
r.sub(linVelA, linVelB);
|
|
float lastLambda = lambda;
|
//btScalar epsilon = btScalar(0.001);
|
|
int numIter = 0;
|
// first solution, using GJK
|
|
Transform identityTrans = Stack.alloc(Transform.class);
|
identityTrans.setIdentity();
|
|
//result.drawCoordSystem(sphereTr);
|
|
PointCollector pointCollector = new PointCollector();
|
|
gjk.init(convexA, convexB, simplexSolver, null); // penetrationDepthSolver);
|
ClosestPointInput input = pointInputsPool.get();
|
input.init();
|
try {
|
// we don't use margins during CCD
|
// gjk.setIgnoreMargin(true);
|
|
input.transformA.set(fromA);
|
input.transformB.set(fromB);
|
gjk.getClosestPoints(input, pointCollector, null);
|
|
hasResult = pointCollector.hasResult;
|
c.set(pointCollector.pointInWorld);
|
|
if (hasResult) {
|
float dist;
|
dist = pointCollector.distance;
|
n.set(pointCollector.normalOnBInWorld);
|
|
// not close enough
|
while (dist > radius) {
|
numIter++;
|
if (numIter > maxIter) {
|
return false; // todo: report a failure
|
}
|
float dLambda = 0f;
|
|
float projectedLinearVelocity = r.dot(n);
|
|
dLambda = dist / (projectedLinearVelocity);
|
|
lambda = lambda - dLambda;
|
|
if (lambda > 1f) {
|
return false;
|
}
|
if (lambda < 0f) {
|
return false; // todo: next check with relative epsilon
|
}
|
|
if (lambda <= lastLambda) {
|
return false;
|
//n.setValue(0,0,0);
|
//break;
|
}
|
lastLambda = lambda;
|
|
// interpolate to next lambda
|
result.debugDraw(lambda);
|
VectorUtil.setInterpolate3(input.transformA.origin, fromA.origin, toA.origin, lambda);
|
VectorUtil.setInterpolate3(input.transformB.origin, fromB.origin, toB.origin, lambda);
|
|
gjk.getClosestPoints(input, pointCollector, null);
|
if (pointCollector.hasResult) {
|
if (pointCollector.distance < 0f) {
|
result.fraction = lastLambda;
|
n.set(pointCollector.normalOnBInWorld);
|
result.normal.set(n);
|
result.hitPoint.set(pointCollector.pointInWorld);
|
return true;
|
}
|
c.set(pointCollector.pointInWorld);
|
n.set(pointCollector.normalOnBInWorld);
|
dist = pointCollector.distance;
|
}
|
else {
|
// ??
|
return false;
|
}
|
|
}
|
|
// is n normalized?
|
// don't report time of impact for motion away from the contact normal (or causes minor penetration)
|
if (n.dot(r) >= -result.allowedPenetration) {
|
return false;
|
}
|
result.fraction = lambda;
|
result.normal.set(n);
|
result.hitPoint.set(c);
|
return true;
|
}
|
|
return false;
|
}
|
finally {
|
pointInputsPool.release(input);
|
}
|
}
|
|
}
|